Geometric Algebra

Table of Contents

1. Definition

  • \(\mathrm{Cl}_{n,0}(\mathbb{R})\) with the quadratic form \(g\) satisfies \(g(e_i, e_i) = 1\).

1.1. Grade

  • The grade of the graded subalgebra.

1.1.1. Grade Projection

  • \(\langle A\rangle_r\): Take the grade \(r\) part.

1.2. k-Vector

  • Multivector consisting solely of grade \(k\) multivectors.

1.3. k-Blade

  • Exterior product of \(k\) vectors.

2. Structures

2.1. Geometric Product

  • The product in Clifford algebra.
  • From \[ ab = \frac{1}{2}(ab+ba) + \frac{1}{2}(ab-ba), \]
  • It follows that: \[ ab = a\cdot b + a\wedge b \]

2.2. Exterior Product

  • Meet

2.2.1. Of Vectors

  • \[ a\wedge b := \frac{1}{2}(ab-ba) \]

2.2.2. Canonical Extension

  • It is extended to exactly match the structure of the exterior algebra
  • It is defined to satisfy for each graded algebra:
    • \[

      \begin{align*} 1\wedge a_i &= a_i\wedge 1 = a_i\\ a_1\wedge a_2\wedge \cdots \wedge a_r &= \frac{1}{r!}\sum_{\sigma\in S_r}\mathrm{sgn}(\sigma) a_{\sigma(1)}a_{\sigma(2)}\cdots a_{a\sigma(r)} \end{align*}

      \]

    • for all vectors \(a_i\).
  • And extended by liearity.
  • Equivalently, \[ C\wedge D := \sum_{r,s}\langle \langle C\rangle_r\langle D\rangle_s\rangle_{r+s}. \]

2.2.3. Alternative Extensions

  • Commutator Product
    • \[ C\times D := \frac{1}{2}(CD-DC) \]

2.3. Regressive Product

  • Join
  • Dual of the exterior product
  • \[ C\vee D := (CI^{-1})\wedge (CI^{-1}))I \]
  • with \(I\) being the unit pseudoscalar of the algebra.

2.4. Inner Product

2.4.1. Of Vectors

  • Vector Inner product \(a\cdot b := g(a,b)\) satisfies
  • \[ \frac{1}{2}((a+b)^2 - a^2 - b^2) = a\cdot b \]
    • The .

2.4.2. Extensions

  • Left Contraction
    • \[ C\mathbin{\rfloor} D := \sum_{r,s}\langle \langle C\rangle_r\langle D\rangle_s\rangle_{s-r} \]
    • Identity for any vector \(a\) and multivector \(B\): \[ aB = a\rfloor B + a\wedge B. \]
  • Right Contraction
    • \[ C\mathbin{\lfloor} D := \sum_{r,s}\langle \langle C\rangle_r\langle D\rangle_s\rangle_{r-s} \]
  • Scalar Product
    • \[ C\ast D := \sum_{r,s}\langle\langle C\rangle_r\langle D\rangle_s\rangle_0 \]
    • See ((6684e628-7453-41e8-837d-0a1a7a60d8d5))
  • (Fat) Dot Product
    • \[ C\mathbin{\bullet} D := \sum_{r,s}\langle \langle C\rangle_r\langle D\rangle_s\rangle_{|s-r|} \]

2.5. Dual Basis

  • Reciprocal Basis, Reciprocal Frame
  • If the quadratic form is nondegenerate, then \(V^*\) is naturally identified with \(V\).
  • The dual basis can be constructed \[ e^i = (-1)^{i-1}(e_1\cdots \check{e_i}\cdots e_n)I^{-1} \]
  • where \(I\) is the pseudoscalar and \(\check{e_i}\) denotes that \(i\)th basis vector is omitted from the product.
  • Note that when the change of basis happens the basis and dual basis transforms differently, which makes it a ((655459b9-8584-48ba-82a3-a521a935e24b)).

3. 2-Dimensional

  • \(\mathcal{G_2}\)

3.1. Polar Coordinates

  • The basis vectors can be represented as
    • \[

      \begin{align*} \hat{\mathbf{r}} &= \mathbf{e}_1e^{i\theta} \\ \hat{\bm{\theta}} &= \mathbf{e}_2e^{i\theta} \end{align*}

      \]

    • where \(i\) is the pseudoscalar \(\mathbf{e_1}\mathbf{e}_2\).
    • Note that \(\hat{\mathbf{r}}i = \hat{\bm{\theta}}\).
  • Circular velocity and acceleration with geometric algebra - YouTube

4. 3-Dimensional

  • \(\mathcal{G}_3\), \(\mathcal{G}(3,0,0)\)

4.1. Triple Vector Product

  • \[

    \begin{align*} a\cdot (b\wedge c) &= a\cdot (ib\times c) = \frac{1}{2}(aib\times c - ib\times ca)\\ &=\frac{i}{2}(ab\times c - b\times c a) = ia\wedge(b\times c)\\ &= -a\times (b\times c) \end{align*}

    \]

    • Note \(ai = ia\).
  • \[

    \begin{align*} (a\wedge b)\cdot c &= \frac{1}{2}(ia\times b c - cia\times b)\\ &= i (a\times b)\wedge c = -(a\times b)\times c \end{align*}

    \]

5. Dimensionality

  • This happens because Geometric algebra is doing algebra on geometry.
    • Geometric Dimension
    • Algebraic Dimension

6. Models

7. Reference

Created: 2025-05-06 Tue 23:35